This document was not scanned at high resolution, so parts of it may be unreadable.

It is provided as-is. The engineer's seal reads:

Registered Professional Engineer State of Nebraska

Robert A. Christiansen E-4623

LOAD AND STRESS ANALYSIS

TELEX/HYGAN PRODUCT 125 STEEL CRANK LP TOWER

> BY MORRES STOVER

> > NOVEMBER 16, 1982

Paraved & APPROVED

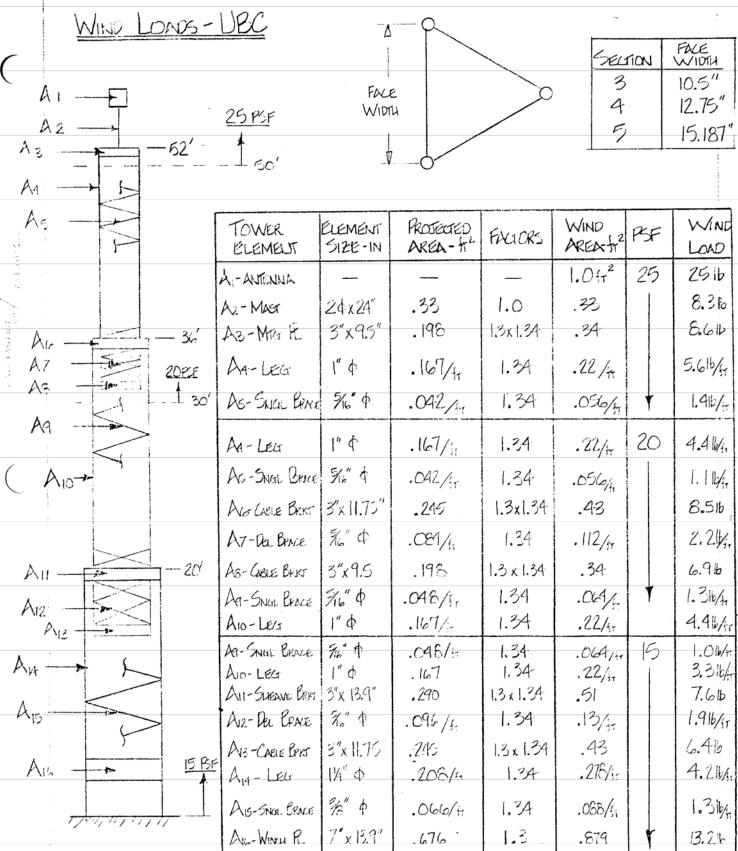
TOLT A CLITTER

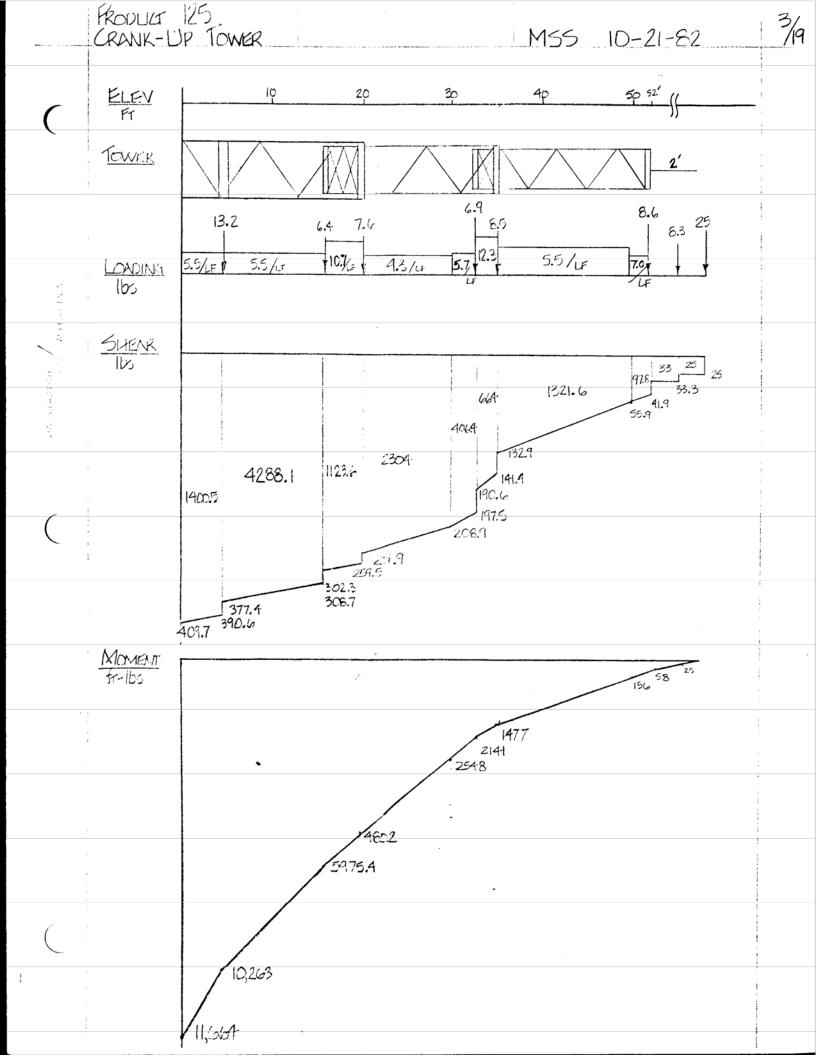
10/16/8-2

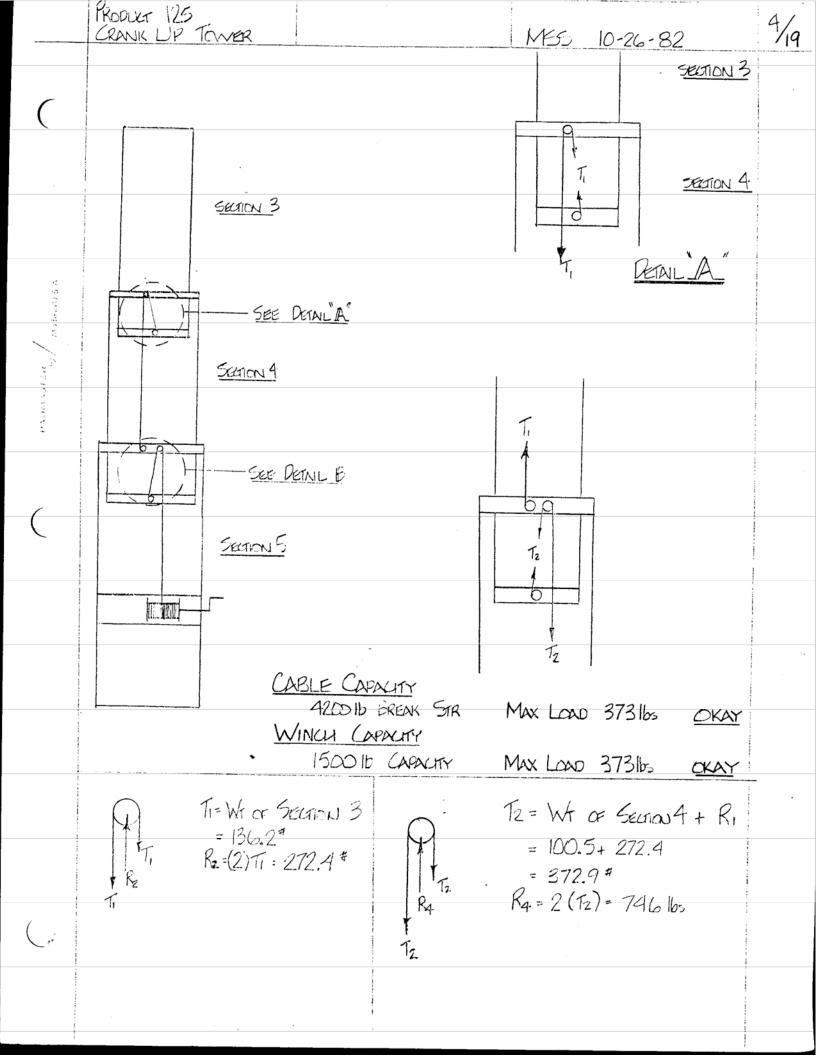
THIS REPORT PROVIDES AN ANALYSIS OF LOADS AND RESULTING STRESSES FOR TELEX/HYGAN PRODUCT 125 CRANK UP TOWER.

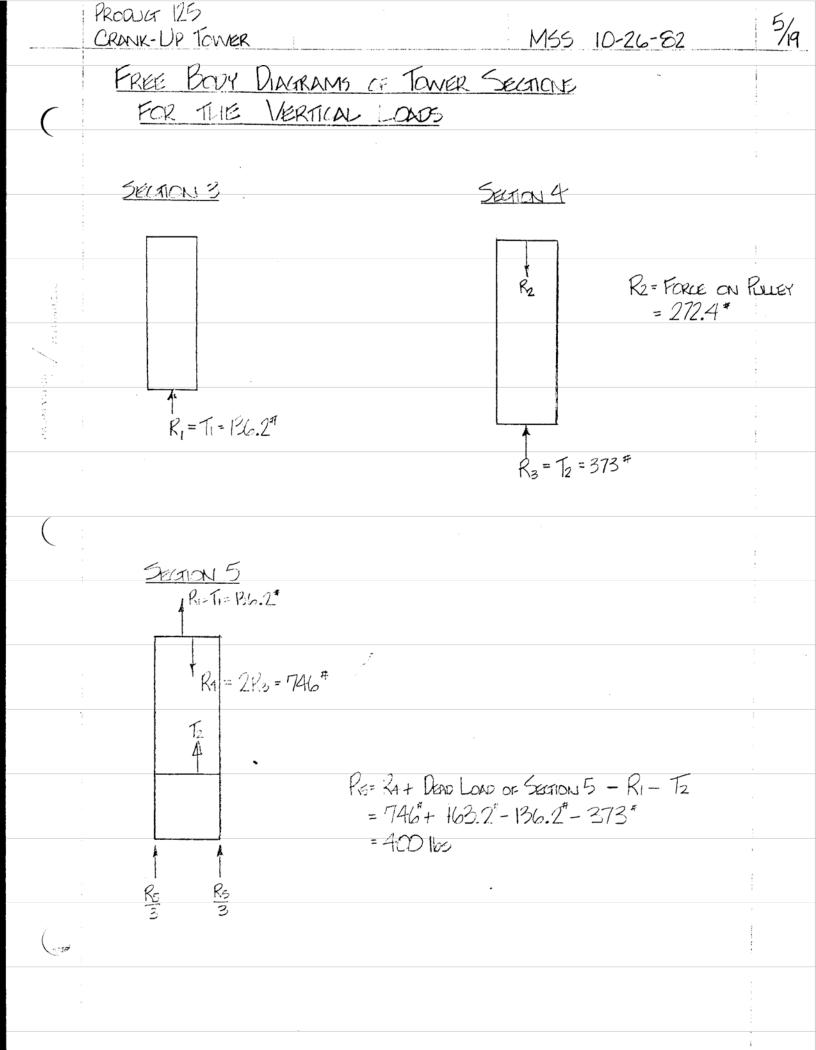
DESIGN CRITERIA

- 1. STRUGURAL DESIGN: UBC
- 2. WIND LOADS: LIBC 20
- 3. DESIGN STRESS: AISC
- 4. FOOTINGS: UPC/ACI


REFERENCES:


- 1. STRLYT. ENGR. HNDBK.
- 2. ASTM STANDARDS
- 3. AISC. STEEL CONSTRUCTION MANUAL
- 4. ACI 318-77
- 5. TELEX/HYGAIN TOWER DESIGN & INSTALLATION DRAWING NO. 125-1


REVIEWED & APPROVED


PAGES 1-19, 11-16-82.

11/1682

ALONARIE GREESKES AIGC & UBC :

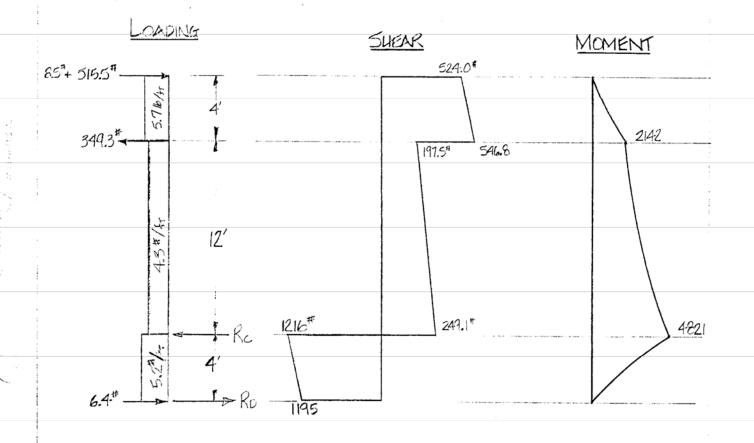
MEMBER (31) AREA () k k F FY FO FO (KOI) DECTION 3 LEG 1"4x.06 .191 1: .55" 1.0 45.0 45 22.90 30.46 PAGGONUL 51.4 .077 1276 .6 127.4 36 9.20 12.24 DIMAGNAL 51.4 .077 1276 .8 127.4 36 9.20 12.24 DIMAGNAL 51.6 0 .077 1276 .8 127.4 36 9.20 12.24 DIMAGNAL 51.6 0 .077 1276 .8 143.0 36 7.30 9.71 DIMAGNAL 51.6 0 .077 12.7 .76 .8 143.0 36 7.30 9.71 DIMAGNAL 51.6 0 .077 12.7 .76 .6 143.0 36 7.30 9.71 DIMAGNAL 51.6 0 .077 12.7 .76 .6 143.0 36 7.30 9.71 DIMAGNAL 51.6 0 .077 12.7 .76 .6 143.0 36 7.30 9.71 DIMAGNAL 51.6 1.10 12.7 .76 .8 134.5 36 8.25 10.97 DIMAGNAL 36" 0 .110 12.7 .74 .8 134.5 36 8.25 10.97 DIMAGNAL 36" 0 .110 12.7 .74 .8 134.5 36 8.25 10.97		•						. ^			,	
Lea		MEMBER.	200	AREA	<i>S</i> .		k	K.	<u> </u>		Fá	
PAGONN. 51.4 .077 12 .78 .8 127.4 36 9.20 12.24 DINGOLD 51.4 .077 12 .78 .8 127.4 36 9.20 12.24 SECTION A LECT 14 x.09 .270 16' .22 1.0 46.6 45 22.70 30.27 DINGOLD 516 0 .077 12.7 .78 .8 13.0 36 7.30 9.71 DINGOLD 516 0 .077 12.7 .78 .6 13.0 36 7.30 9.71 SECTION 5 LECT 14 4 x.120 .426 15 .52 1.0 37.3 45 23.82 31.68 DINGOLD 56 0 .110 15.5 .74 .8 134.5 36 6.25 10.97 DINGOLD 56 0 .110 15.5 .74 .8 134.5 36 6.25 10.97		SECTION 3							(Ksi)	(K51)	(K51)	\top
DIMAGNAL S/16 P. COTY 12		LEG	1"4x.065	.191	15.	.53"	1.0	45.0	49	22.90	30.46	
DINGONAL 5/16 \$.077 12		ARGONAL ZINGIE	5/100	.077	12.	.78	.જે	127.4	36	9.20	12.24	
LEG 1"4x.08 .270 16' .22 1.0 46.6 45 22.70 30.27 DINGONAL 5/6 0 .077 12.7 .78 .8 143.0 36 7.30 9.71 DINGONAL 5/6 0 .077 12.7 .78 .6 143.0 36 7.30 9.71 SECTION 5 LEGT 14 0 x.120 .426 15 .22 1.0 37.3 45 23.82 31.68 DINGONAL 36" 0 .110 15.7 .74 .8 134.5 36 6.25 10.97 DINGONAL 36" 0 .110 15.7 .74 .8 134.5 36 6.25 10.97	1	DINGONAL	5/16 0	.C77	12.	78	3,	127.4	36	9.20	12.24	
LEG 1"4x.08 .270 16' .22 1.0 46.6 45 22.70 30.27 DINGONAL 5/6 0 .077 12.7 .78 .8 143.0 36 7.30 9.71 DINGONAL 5/6 0 .077 12.7 .78 .6 143.0 36 7.30 9.71 SECTION 5 LEGT 14 0 x.120 .426 15 .22 1.0 37.3 45 23.82 31.68 DINGONAL 36" 0 .110 15.7 .74 .8 134.5 36 6.25 10.97 DINGONAL 36" 0 .110 15.7 .74 .8 134.5 36 6.25 10.97	::	SHING										
DIMPONING 516 0 .077 12.7 .78 .8 143.0 36 7.30 9.71 DIMPONING 516 0 .077 12.7 .78 .6 143.0 36 7.30 9.71 SECTION 5 LECT 14 0 x.120 .426 15 .72 1.0 37.3 45 23.82 31.68 DIMPONING 36 0 .110 15.7 .74 .8 134.5 36 6.25 10.97	`.		1"1 x .095	.270	15'	-22	1.0	46.6	45	22.70	30.27	
SECTION 5 LEGT 14" \$\phi \text{1.10} \ .426 \ 15 \ .72 \ 1.0 \ 37.3 \ A5 \ 23.82 \ 31.68 DINGONAL 36" \$\phi\$.110 \ E=" .74 \ .8 \ 134.5 \ 36 \ E.25 \ 10.97 DINGONAL 36" \$\phi\$.110 \ E= 34 \ 8 \ 134.5 \ 36 \ E.25 \ 10.97		DINGONAL	5/6" 0	.077	1			143.0	36	7.30	9.71	
SECTION 5 LEGT 14" \$\phi \text{1.10} \ .426 \ 15 \ .42 \ 1.0 \ 37.3 \ .45 \ 23.82 \ 31.68 DINGONAL 36" \$\phi \ .110 \ 15.5" \ .74 \ .8 \ 134.5 \ 36 \ 6.25 \ 10.97 DINGONAL 36" \$\phi \ .110 \ 15.5 \ 34 \ 8 \ 134.5 \ 36 \ 6.25 \ 10.97		Divactive.	9/60	.077	13.9	::78	.6	H3.0	36	7.30	9.71	-
LEGT 14" \$\pi x.120 \ .426 \ 15 \ \frac{15}{10} \ \ 37.3 \ \ 45 \ \ 23.82 \ \ 31.68 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
DINGOLAL 36" 4 .110 ES 34 .8 134.5 36 8.25 10.97 DINGOLAL 36" 9 .110 ES 34 8 134.5 36 8.25 10.97		1	14" d x .120	.426	15	4, 7	1.0	37.3	45	13.82	31.68	-
DIAGONAL 36" 9 110 15= 34 8 1345 36 825 10 97	_	DIMONAL	ł			i						
DOUBLE 10011		SINGLE										-
		DOUBLE	/ (* **				. []		26	(, 2)	10.11	

Notes:

1 K FACTOR

K=1.0 LES

·K=0.8 SINGLE DIAGONALS


K=0.8 DOIELE DAGONALS

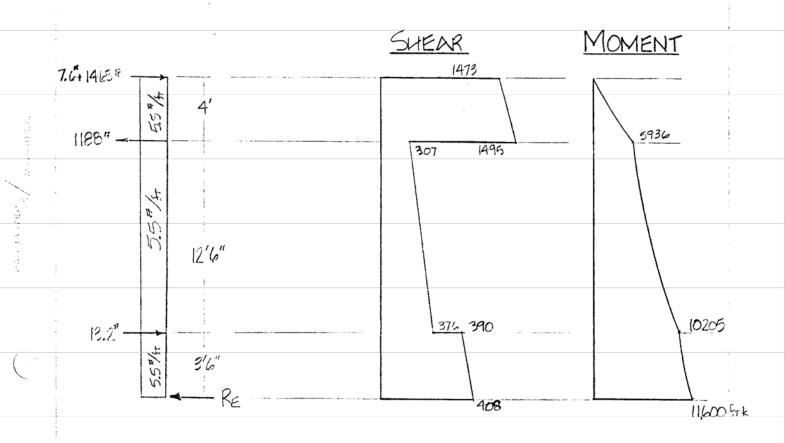
2 Fa. - ALLOWARLE STRESS FOR COMPRESSIVE MEMBERS - ASC 15.1.2.1 28 1.5.1.3.2

3 Fá-ALLOWAELE STRICK INCREAGED ET 1.33 - LIBC

FROWER 125 CRANK-UP TOWER MSS. 11-2-82 FREE BOOY DAGRAMS SECTION 3 LOADING SHEAR MOMENT 41.9# 58.3 27.01/ 55.9° 156.1 1329 1477.7 356.2. 4R = 25*(22) + 83(21) + 8.6(20) + 7.0(19)2 + 14(5.5)11 + 4(6.6)2 Ra. 515.5 160 Pie: 349.316

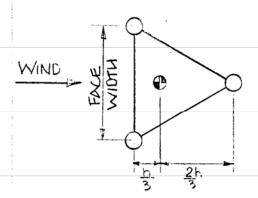
FREE BOOY DIAGRAM SECTION 4

4Rc= 524 (20) + 5.7 (4)16 - 349.3 (16) + 4.3 (12)10 + 5.2 (4)(2)


Rc= 1465 los

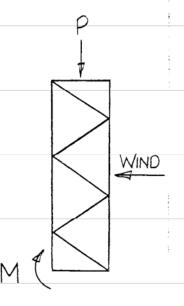
Ro= 1186 los

FROULT 125 CRANK UP MSS 11-2-82


9/19

FREE BOOY DAGRAMS

RE = 408 lbs

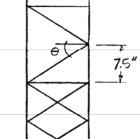


$$P = \frac{PoL}{3} + \frac{M \times 12}{h}$$

h= Face WIDTH $x \le 100^\circ$ M = MOMENT DUE TO WIND = $Fx \frac{2}{3}h + 2x \frac{F}{2}x \frac{h}{3}$ = Fxh

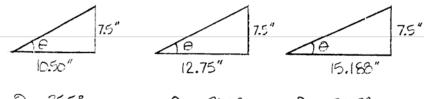
HENCE: F= Mn

$$f_a = \frac{P}{A}$$


MEMBER	MOMENT fr-16s	LOAD - POL 10%	Z J	AREA IN²	P	fa PSI	Fá	F'a fa
SECTION 3 ELEV 36	1478	45	9.1	.191	1994	10,440	30,460	2.92
SECTION 4 ELEV 20'	4821	124	11.0	.270	5,383	19,940	30,270	1.52
SECTION 5 ELEV O	11,600	133	13.2	.426	10,680	25,070	31,680	1.26

ACTIVAL STREESES &

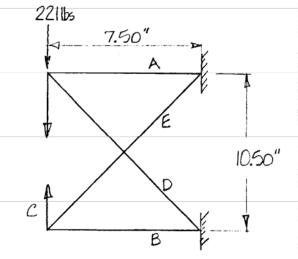
COMPRESSIVE LCADS - DIAGONAL BRACES


V= Max shear on Tower section
$$\frac{V}{S_n} = \frac{V}{2\cos 30^\circ} = .577V = Shear on one Face$$

$$5 = \frac{5}{3000} = SHEAR INTO THE DIAGONALS$$
 $\delta_a = \frac{5}{4}$

SECTION 3

SECTION 4 SECTION 5


2 - 26.60	A - 21 50	D 21 20
D 3 = 35.5°	€4 = 31.0°	Oz = 26.3°

<u> </u>	MEMBER	V lbs	%	AREA IN 2	fa B1	Fa	Flata
SIN	TION 3 Vale Brace Vele Brace	133 383	94.3	.077	1225 1857	12,240 12,240	10.0
SIN	TION 4 GLE BRACE JELE BRACE	547 1216	368 432	.077 .077	4779 5610	9,710 9,710	2.03 1.73
511	TION 5 IGLE BRACE UBLE BRACE	408 1495	263 5 24	.110	2391 476A	10,970 10,970	4.59 2.30

ANALYSIS OF THE DOUBLE BRACING SECTION 3

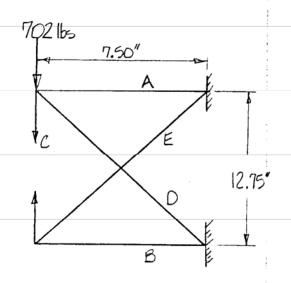
APPLYING THE METHOD OF LEAST WORK

$$V_{\text{max}} = 383 \text{lbs}$$

 $S_{\text{h}} = 221 \text{lbs}$

MEMBER	A IN ²	l In	5' lb	51/4	и	U5' 1/4	U ² Å	Ru	S'+ RU
B C D	.191 .38	7.5 10.5 12.9	0 0 -272	+6204 0 0 0 -45,570	+.71		19.79 27.63 253.5	-74.76 -105.3	+83.2 -74.8 -105.3 -142.5

60,455 574.1


$$R = -\frac{60455}{574.1} = -105.3$$

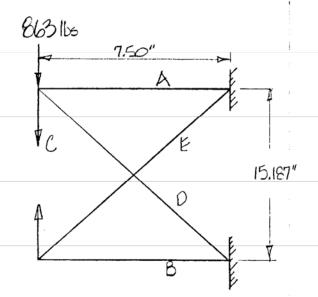
NOTES:

- (+) TENSION
- (-) COMPRESSION
- O 5'+ RU = 5 = SHEAR INTO MEMBER (REFER TO PAGE 1/9)

ANALYSIS OF THE DOUBLE BRACING SECTION 4

METHOD OF LEAST WORK

MEMBER	A IN ²	l IN	5' 1bs	5' %	и	u5'%	и ² %	Ru	5'+ Ru
A B C D E	.27 .38	7.5 12.75 14.8	0 0 -815	+11,470 0 0 -156.650	+ .59	0 0 +121,710	9.67 33.55 258.6	-195.1 -330.6 +383.5	+217.9 -195.1 -330.6 -431.5 +383.5


188480 570.2

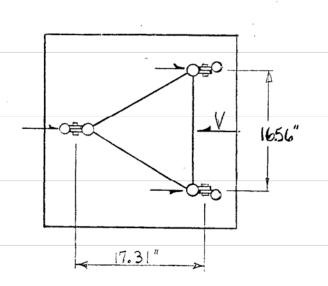
NOTES:

- (+) TENSION
- (-) COMPRESSION
- (REFER TO PAGE 1/19)

ANALYSIS OF THE DOUBLE BRACING SECTION 5

METHOD OF LEAST WORK

MEMCER	A IN ²	l IN	5' lbs	51/A	и	us'la	u² ¾	Ru	5'+ RU
AB	.426 .426	7.5" 7.5"	+425	7430 O	+.494	+ 3695 O	4.30 4.30		+232.8
6	.38	15.19	0	0 /	1.0	0	40.0	-389.1	
D	.110	16.9"	-960	147,490	-1.12	+165,190	192.7	+437.8	-524.2
E	.110	16.9"	0	0	-1.12	0	192.7	+437.8	+437.8


168865 434.0

$$R = -\frac{168885}{434.0} = -389.1$$

NOTES:

- (+) TENSION
- (-) COMPRESSION
- 1 5'+ RU = S = SHEAR INTO MEMBER (REFER TO PAGE 1/9)

FOUNDATION - BOLTS IN FRICTION CONNECTION USING A307 BOLTS

VERTICAL LOADS

POL= 133 lbs/LEG

M = 11,600 ft-lbs

P= 11,600 x 12 ± 133

17.31 = 8173 lbs (8040 TENSION)

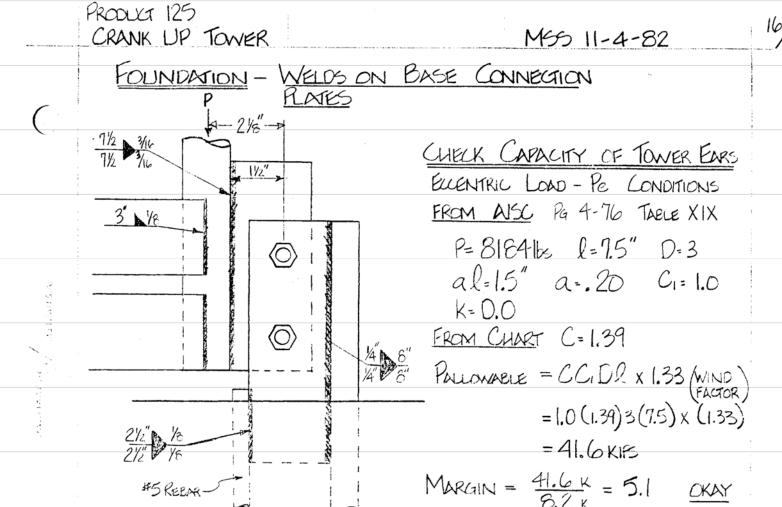
HORIZONTAL FORCE

V = 408 lbs

RESULTANT FORCE

=(408² + 8173²)½ = 81841bs

CHECK THE CAPACITY 2-34" A307 BOLTS


FORCE = F.
$$\frac{\pi d^2}{4}$$

$$= 10 \text{ Ks} \frac{\pi (.75)^2}{4}$$

$$= 4.419 \text{ H}$$

= 4418 lbs x 2 BOLTS = 8636 lbs x 1.33 (wind Factor)

MARGIN = ALLOWARLE FORCE = 11,750 = 1.44 CKAY

CHECK CAPACITY OF FOUNDATION EARS

TOTAL WELD CAPACITY - E 70

BULDWARE = .707(.3)70(.125(2½)2 + .25(8")2)

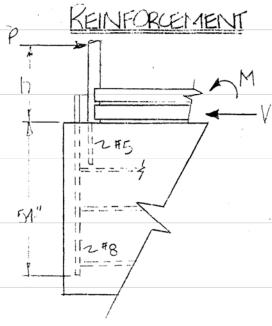
= 68.7 KIPS X 1.33

 $MARGIN = \frac{91.3k}{82k} = 11.1 \text{ OKAY}$

CHECK THE CAPACITY OF THE BASE BRACKETS

1 = 17,391 IN-165

M=MOMENT CAUSED BY = Px 2/8" Ruw=.707(70).3(3")/8


= 5568 x 1.33

COUPLE - 17391 w-lbs = 4969 lbs

MARGIN= $\frac{7405}{2869} = 2.6 \text{ CKAY}$

 $C \rightarrow \sqrt{30^{\circ}}$ $T = \frac{4969}{2 \times 60530} = 2869 \text{ bs}$

FOUNDATION & FOLHOLATION

CHECK IMBEDMENT LENGTHE-la *8 BARS REF. ACI

ld=. 04 Ab fy/fi

ld=.04(.79)40000/12000

ld = 28.33"

ACTUAL Id = 54" OKAY

#5BARS

ld=10.7" Actual ld=16"

OKAY

CHECK BAR TENSION

P T = 8010 = 4020 1/2/PER BAR

Margin = $\frac{12400}{4020}$ = 3.1 OKAY

PALLOW = AREA X 40,000 PSI

=.31 x 40,000 BI

= 12,400 lbs

CHECK FOUNDMION DEPTH

 $M = 11,600 \text{ fi-lbs} \quad V = 408 \text{ lbs} \quad V = P$ $h = \frac{M}{7} + .5 = \frac{11600}{408} + .5 = 28.93'$

 $d = \frac{A}{2} \left(1 + \sqrt{1 + \frac{4.3 \text{Lh}}{A}} \right) \quad \frac{\text{REF.}}{\text{LJBC}}$

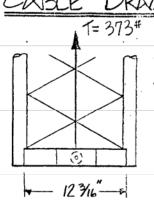
 $d_{ALON} = \frac{.337}{2} \left(1 + \sqrt{1 + \frac{4.36(26.93)}{.339}} \right)$ $= 3.44 + f_T$

FOR CLASS 3 SOLS ISOLATED FOOTING

 $S_1 = 200(2)1.42 = 568$ B = 42(1.414) = 4.950

12

 $A = \frac{2.34P}{5.8} = \frac{2.34(408)}{568(4.950)}$


A = .339

SPECIFIED DEPTH = 5.50 fr

OKAY

PRODUCT 125 CRANK UP TOWER

M.S.S. 11-16-82

SECTION 4

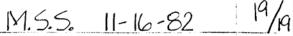
M, in-lbs ~ Mmax = PL4 = 1136 IN lbs

$$M_{3''} = {3 \choose 3/32''} 1136 = 560 \text{ in lbs}$$

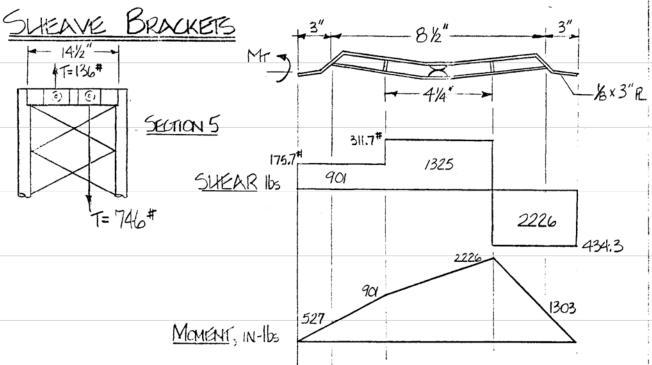
$$5x_{\text{couble PLATE}} = \frac{(k_8) 3^2}{6} x 2 = .375 \text{IN}^3$$
 $f_{\text{bx}} = \frac{1136 \text{IN} \log_2 3.03 \text{Ks}}{375} = 3.03 \text{Ks}$

$$5x_{SINGLE PLATE} = \frac{(1/8)3^2}{6} = .18751N^3$$
 $f_{DX} = \frac{560 \text{ in} \cdot 165}{.1875 \text{ in}^3} = 2.99 \text{ KSi}$

Mr = MOMENT DUE TO ECCENTRUTY = Pe e=0": Mr=0


MARGIN

$$\frac{F_{b}}{f_{b}} = \frac{24 \text{ KSI}}{3.03 \text{ KSI}} = 7.9$$
 OKAY


WELD CAPACITY

MARGIN (WELDS)

$$f_{\text{DX}_{\text{SINGLE}}} Place = \frac{1303 \text{IN} \, \text{lbs}}{.1875 \, \text{IN}^3} = 6.95 \, \text{Ksi}$$

$$f_{\text{bx}} \text{ DARE PLACE} = \frac{2226 \text{IN} \, \text{lbs}}{.375 \, \text{IN}^2} = 5.94 \, \text{Ksi}$$

$$D_{fT} = SHEAR STRESS = \frac{MT}{.383 b^2 d}$$

$$= \frac{217.2}{.383 (18)^2 3} = 13.9 \text{ Ks}$$

MARGIN

$$\frac{F_b}{f_b} = \frac{24 \text{KSI}}{17.8 \text{KSI}} = 1.35$$
 OKAY

①- FROM - STD HANDROOK FOR MECH. ENGINEERS by BAUMEISTER & MARKS 2- FROM - ELEMENTS OF STRENGTH OF MATERIALS BY TIMOSHENKO & YOUNG

ENTREMENT - PROPER 125 LOTTE 1 6-26 AVENUE THE 11/16/30 - Congress Lose Described more there will also the out to the se The one forth AMELINA, WITH TORKE IN THIS PORTE OF - PAGINE! 1. The table to september the ties (> /2 manual - Compatible of the matter than THE ANTENIA WITH LOOK TOUR LES WITH KIND OF Francis Aigh or Layer The this = 169 x 19 = 1.74 +75 =-PLOYED HER M MINISTRA JAKTOON WINT LODED ON TOWER - HERE 30 WHIT WILL AT MY 1.76 × 15 = 26.6 × 15 = 100 21 = 2×15 = 5000 TSINEE W7 16-5 #/2-MA= 45/2- 30 上のではいってない 4. L. V LE 1550 Morker, £- 100 Long (11 11 11) for administ now, a recognist the the Carles of the State of the State of the 6.514